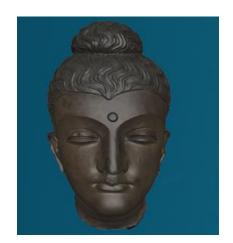


SIGGRAPH 2014 BOF:

Cultural Heritage & Mixed Reality


Nicholas Polys, Ph.D. Virginia Tech, https://vis.arc.vt.edu/

Pedro Santos Fraunhofer IGD cultlab3D.de

Web3D Consortium, http://www.web3d.org

Vancouver, Canada 8 - 15 August 2014

Outline

- Introduction
- Opportunities
- Application Examples & Requirements
 - Cultural and Natural Heritage
 (see also Web3D 2014 Workshop)
 - Mixed and Augmented Reality
- Scoping the challenge for Web3D graphics community
- Call to Action

Steve Miller was Right!

• "Time keeps on slippin... slippin ... slippin into the future"

- Memories fade
- Materials degrade
- Political factors upheaval /access
- Preservation often comes at the expense of access

David Byrne was right!

"Same as it ever was...

Look where my hand was

Time isn't holding up

Time is an asterisk

Same as it ever was... "

Once in a Lifetime

... The time is now!

Heritage

Millions of cultural and natural heritage artifacts populate our museums and about 90% still await discovery in museum archives!

- Can digital archives help us with this problem?
- Can the web be used to multi-purpose these precious assets?

Web3D Heritage

3D Digital models can provide:

- Arbitrary availability and concurrent access to digital surrogates of cultural heritage artifacts for art historians and scientists:
 - Use of digital surrogates in cultural heritage institutions for exhibition planning, documentation and acquisition planning.
 - Virtual presentation (combined with new forms of presentation technologies, such as hybrid exhibitions) as a means to increase attractiveness
 - Possibility for new science and research!

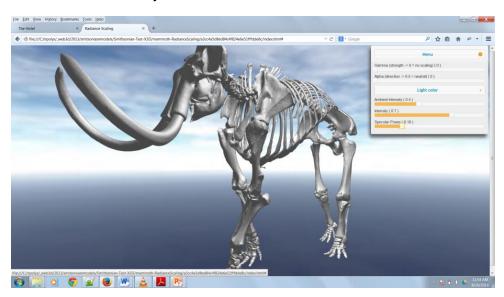
Web3D Heritage


3D Digital models can provide:

- Physical surrogates based on digital 3D models:
 - Substitute loaning of cultural heritage artifacts by digital surrogates avoiding damage from transport, insurance fees and legal issues.
 - Reusability of historically correct 3D models in gaming and film industry as well as for architectural reconstruction.

www.Web3D.org

See Homepage Case Studies!


Game Changers

- Scanning Technology increase resolution, accuracy, coverage
- Processing Tools Meshlab, Polytrans, 3DS exporters, Geomagik, Rawkee, ...?
- Publication platforms for industrial strength immersion (X3D) and/or web-wide interactive 3D (HTML5+X3DOM)
- 3D Printers increase in capability, decrease in cost

Challenges I

- Acquisition
 - Accuracy: e..g. physical sensors, occlusion
 - speed
- Scan data size
 - Meshes
 - Texture maps
 - Volumes
 - ... other material descriptions

Challenges II

- Processing geometry and appearances
 - to polygon and low polygon models
 - Hole filling
 - Re-topologizing
 - ... Many techniques (e.g. in Meshlab)
 Work better or worse depending on the data

Challenges III

- Durable collections
 - Asset formats built for long-term viability of content
 - Not subject to proprietary whims, royalties
 - Use ISO standards for international recognition
- Interoperable collections:
 - CIDOC ontologies, LIDO XML populating and integrating metadata into the scene graph
 - Annotation / population of ontologies
 - Shape database Search

Challenges IV

- Accessible collections (portability)
 - Not bound to specific platforms
 - Reproducible visualizations

Can we find best practice?

- Workflows, portals
- Lossiness and processing ,
 Visual fidelity in delivery
- Open tools and reproducible presentations

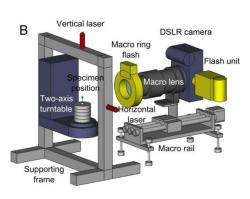
Good news:

We are working on it!

Pedro Santos, Fraunhofer IGD

EU and National initiatives:

- CoForm
- CultLab3D

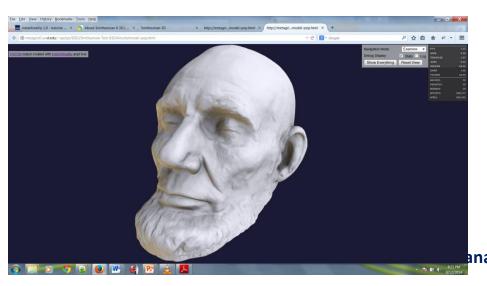


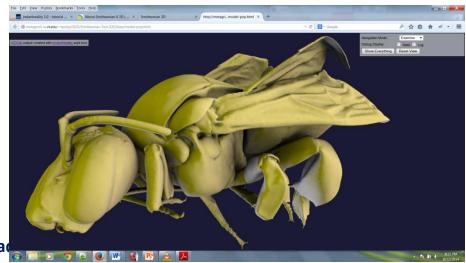
Cultural & Natural Heritage

- What requirements are common here?
- What makes these applications or communities different?

See Matt Adcock' Web3D 2014 poster on digital

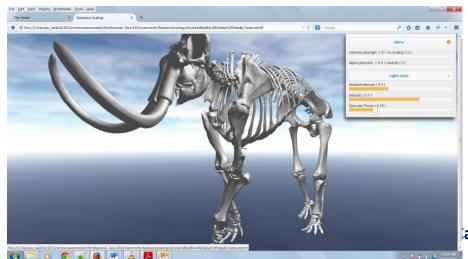
entomology!

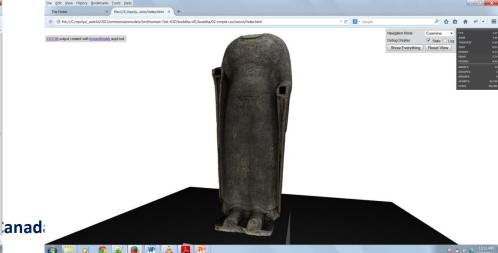




Smithsonian 3D

- Keynotes @ Web3D 2014:
 - Günter Waibel, Director of Digitization
 Smithsonian Inst. http://3d.si.edu/
 - http://metagrid1.sv.vt.edu/~npolys/SI3D/





More Digital Heritage Examples

X3D from phones to CAVEs!

- Cosmic Buddha
- Mammoth w/ interactive multi-texture control
- Using models to test new X3D compression methods and metadata schemes

X3DOM.org

Fraunhofer IGD

- Liberal Open Source WebGL library for X3D and HTML5 integration – Git it!
- X3DOM volume rendering component

... X3DOM.ORG ...

 Other strong contributors around the world include VicomTech (Web3D Members)

See Also: the industrial strength instantReality.org

Web3D

The open, not-for-profit vehicle for the community to develop and drive international standards and recommendations

- Special Interest Groups
- Working Groups

Experiment: Mixed and Augmented Reality

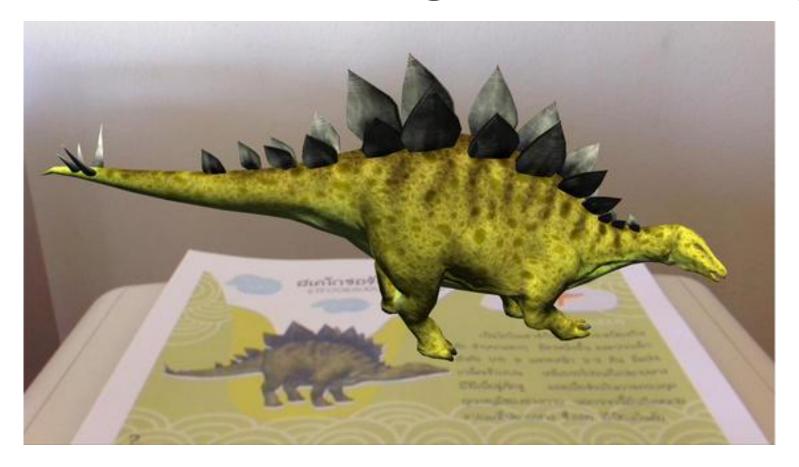
CONDITIONS		Zoom			
		Physical Device	Finger Pinch		
		Proximity	Manipulation		
Rotation	Physical Device Orientation	None	Pinch		
	Finger Glide Manipulation	Touch	Both		

3DUI 2013 Poster: A Comparative Study of Metaphors for Investigating

Augmented Reality
Artifacts

Kimberly Zeitz, Rebecca Zeitz, Congwu Tao, and Nicholas Polys

Interface	Interface Type	Techniques	Accuracy Ranking	Speed Ranking	Ease of Use Ranking	Intuitiveness Ranking	Favorite Interface	Favorite Rotation	Favorite Zoom
Both	Non-mixed	Pinch Zoom Touch Rotation	1	2	3	2	Tied	Yes	Tied
None	Non-mixed	Physical Zoom Physical Rotation	2	1	1 1	1			Tied
Pinch	Mixed	Pinch Zoom Physical Rotation	3	4	4	3			Tied
Touch	Mixed	Physical Zoom Touch Rotation	4	3	2	4	Tied	Yes	Tied



Exciting Times!

- A lot of 'Wild West' innovation and compelling applications
- A growing concern for longevity and interoperability of MAR content: deliberate design for long term success
- Between 2011 and 2013, several SDOs took on the problem

Mixed and Augmented Reality

MAR focus

Mixed Reality Continuum

Physical Reality

Augmented Reality

(Physical > Virtual):
"adds" computer-generated
information to the real world
(Azuma et al. 2001)

Augmented Virtuality

(Physical < Virtual):
"adds" real information to
a computer-generated
environment
(Regenbrecht et al 2004)

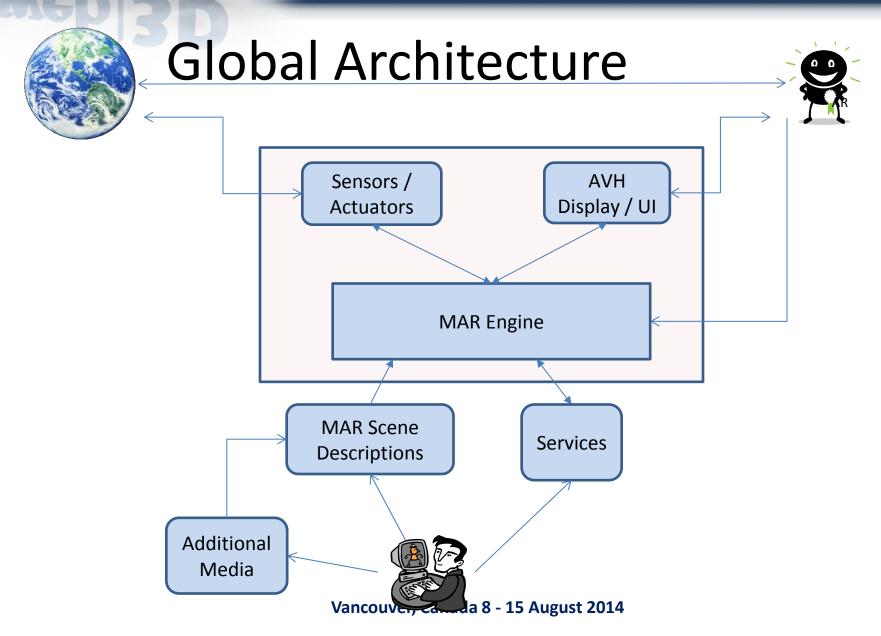
Virtual Reality

Hard Problem for 1 SDO!

- Web3D Consortium
 - http://www.web3d.org/realtime-3d/working-groups/augmentedreality-ar
- Open Geospatial Consortium
 - http://www.opengeospatial.org/projects/groups/arml2.0swg
- Khronos
 - Web/OpenGL, OpenMax AL/SL, StreamInput
- MPEG
 - ARAF: http://wg11.sc29.org/augmentedReality/

==== → ISO SC 24 + SC 29: Joint (ad-hoc) Working Group

ISO MAR Reference Model


- In development
- Uses a component-based classification system
- Covers terminology
- Demonstrates models with local and remote resources for processing and presentation
 - 6 state-of-the-art use cases
 - 2 Point Of Interest (POI) use cases
 - Using 3D video
 - Using 3D audio

Views

Viewpoint	Viewpoint Definition	Topics in RM-MAR
Computational	 Outer specification of a generic system/module /component Interconnection 	 MAR component functionalities and interconnections Input / output specification
Information	Information requirementSemanticsData/information model	 Generic MAR Content Inter-module data model MAR context/event model
Enterprise	Business modelActors	 Potential business model for each actor Actors and their role for MAR

Computational Viewpoint **AVH** Real World **Actuator** Display / UI **AVH Capture** Device **AVH** Rec/Tracker **Spatial** Renderer Mapper Scene Graph Context Engine Mapper MAR Engine **MAR Scene** Descriptions Services Additional Media Vancouv (Section 2) la 8 - 15 August 2014

Get involved in MAR Reference Model

- 1. Stakeholders and participants
 - MAR Reference Model is intended to become an ISO standard
 - Animated by SC24/WG9 and SC29/WG11
 - Contributions from Web3D, ARS, OGC
 - Open to all interested in developing an open and free standard
- 2. ISO Intellectual property rights policy
 - MAR Reference model will be published by ISO under the royalty free policy
- 3. How to get involved
 - Participate to meetings of any standard organization involved (ISO, Web3D, OGC)
 - Direct contributions on http://wg11.sc29.org/trac/augmentedreality

4. Contact information

- Marius Preda (<u>marius.preda@it-sudparis.eu</u>)
- Gerry Kim (gjkim@korea.ac.kr)

X3D AR

- X3D version 3.4 and 4.0 will support the MAR Reference model (4.0 = HTML5/DOM/X3DOM)
 - Much work is complete already
- X3D AR working group cochairs:
 - ar chairs@web3d.org
 - Gun Lee, University of New Zealand
 - Timo Engelke, Fraunhofer IGD
- X3D working group cochair:
 - Don Brutzman, Naval Postgraduate School
 - <u>brutzman@nps.edu</u> cell +1.831.402.4809

Web3D Consortium

- Members from Korea, Germany, France actively working:
 - Rationalized X3D node proposal to support the MAR Reference Model
 - Ongoing design discussions on mailing list, phone calls, wiki:
 - http://www.web3d.org/wiki/index.php/X3D_and_Augmented_Reality
 - http://www.web3d.org/wiki/index.php?title=AR_Proposal_Public_ Review

Open Standards

www.web3d.org

- Portability
- Durability
- IP independence
- International recognition and support

Web3D 2015

June 18-20, Heraklion, Crete (Greece)!

- XML
- HTML 5
 - SVG

International Organization for Standardization

- Web3D MS
- -Web3D FS
 - KML

Interoperability
& Access
Across Verticals

- X3D
- H-Anim
- VRML

- Mime types

Digital Imaging and Communications in Medicine

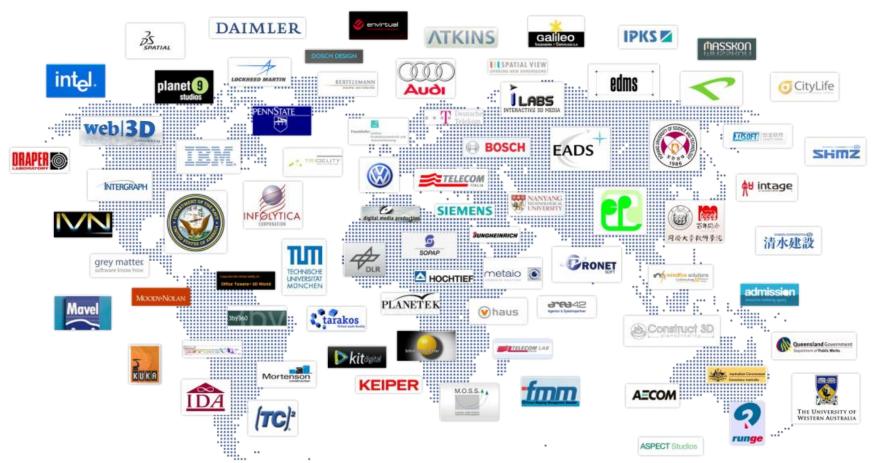
- N-D Presentation
 State
 - Volume data

- OpenGL
- COLLADA

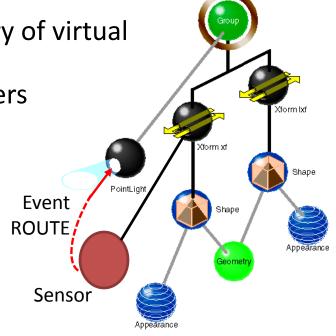
Open Source Multi-D Random Access Filesystems

- HDF5
- NetCDF

Adoption



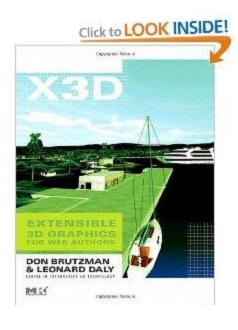




Standard Scope

Scene graph for real-time interactive delivery of virtual environments over the web:

- Meshes, lights, materials, textures, shaders
- Integrated video, audio
- Animation
- Interaction
- Behaviors
- Scripts
- Application Programming Interfaces



3.3 examples for Medical Imaging, CAD and Geospatial support!

X3D Book & Online Resources

http://www.x3dgraphics.com/

Extensible 3D Graphics For Web Authors

From NPS grad class – slides, videos, examples all online!!!

Source of Specs, Models, Links, Bulleting boards, Blogs, Mailing lists,

http://www.web3d.org

Charter and Scoping Discussion

- Gather Critical mass:
 - Listerve
 - Wiki
- Reflect
- Participate in setting our direction:
 - All comments welcome!

Contact:

npolys@vt.edu